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The stability of the Riemann equilibrium ellipsoids, in the class of perturbations which satisfy the Dirichlet assumptions, is 
investigated using Rumyantsev’s method [l]. It is shown that the equations of motion of the Dirichlet liquid ellipsoid are 
Hamiltonian on each combined level of the moment and circulation integrals, which corresponds to well-known results [2], although 
it is not a consequence of them. This fact provides, generally speaking, additional possibilities for solving the problem of determining 
the instability region. In the parameter space of each of the two families [3,4] of Riemann ellipsoids, the region U for which 
almost all the equilibrium ellipsoids belonging to it are unstable is determined in explicit analytical form. It is shown that the 
stability region can be specified in explicit analytical form in both cases. 0 2001 Elsexier Science Ltd. Ah rights reserved. 

The stability of the Maclaurin [l] and Jacobi [5] ellipsoids were investigated in a similar way earlier. 

1. FORMULATION OF THE PROBLEM 

Consider an ideal homogeneous incompressible liquid, the particles of which are attracted to one another 
in accordance with Newton’s. In the functional space of the system, which describes its dynamics, 
provided that the initial perturbation satisfies the Dirichlet assumptions that the surface of the liquid 
is ellipsoidal and that its velocity field is uniformly vertical, we will change to a system of ordinary 
differential equations for the vorticity components (204(t), 202(t), 20+(t)), the semi-axes of the ellipsoid 
(a, b, c) and the components of the angular velocity (p, q, r) in a moving frame of reference [l]. 

We will present this system of ordinary differential equations here in the form that will be most 
convenient later, obtained from the initial system of equations [l] taking into account the condition 
for the liquid volume to be constant, which is a consequence of the incompressibility equation: 
abc = const, where, without loss of generality, we can assume const = 1. We have 

~(A,p+A,o,)+q(C,r+C,o,)-r(B,q+B,w,)=O 
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(XYZ, abc, P9r3 (1.5) 

M (b* -c*)* 4M b*c* 
I=7 b2+c2 ’ 
AL 1 

A, =-- 5 b2 + c2 WKaW 
p,2 a - i?(a, b, c) 

a aa 
(PQR, abc) 

lLi 3M dh 
I 

=4 -m’ 
q(h) = (a* + h)(b* + h)(c* + h) 

(1.6) 

and A4 is the mass of liquid. 
Here and everywhere henceforth in all the formulae, apart from formulae (1.6), (2.5) and (2.10), we 

will assume c = ll(ab); the integration is carried out from zero to infinity. 
If we take into account the Dirichlet conditions and the known form of the solution of Laplace’s 

equation, Eqs (1.1) of system (l.l)-(1.4) follow from the theorem on angular momentum, Eqs (1.2) 
follow from the Helmholtz equations for a vortex in moving axes, and Eqs (1.3) and (1.4) follow from 
Euler’s hydrodynamic equations in moving axes [l]. 

System (1.1)-(1.4) has three integrals: energy, angular momentum and constancy of the vortex intensity 

PI 

(1.7) 

(A,p+A2w,)*+(B,9+B202)*+(C,r+C2w3)* =const (1.8) 

(0, /a)’ + (03~ /b)* + (co, /c)* = const (1.9) 

where 

w23*[5 m (1.10) 

Riemann showed [3,4], that the ellipsoidal equilibrium configurations of a rotating liquid (for motions 
with uniform deformation) can exist, but only in the case when the corresponding velocity field of the 
liquid particles is the superposition of rigid-body rotation and internal uniformly vortex motions. Hence, 
each such equilibrium ellipsoid automatically satisfies the Dirichlet assumptions, and a certain 
equilibrium position of system (l.l)-(1.4) corresponds to it. On the other hand, any perturbation, which 
satisfies the Dirichlet assumptions at the initial instant, will also satisfy them any subsequent instant of 
time (its dynamics in this case is determined by system (l.l)-(1.4)). 

The question therefore naturally arises here of the stability of the Riemann equilibrium ellipsoids 
in the class of perturbations which satisfy the Dirichlet assumptions, which is equivalent to the Lyapunov 
stability of the corresponding equilibria of system (l.l)-(1.4). 

Riemann proved [3] that the set of all equilibria of system (l.l)-(1.4) is a union of two subsets 
(“families”): for the ellipsoids of the first of these the angular velocity and vorticity vectors of the internal 
motions lie in one of the principal planes of the ellipsoid, while for the ellipsoids of the second family 
these vectors are collinear and are directed along one of the axes [3,4]. 

The analytical solution of the problem of the stability of the Riemann equilibrium ellipsoids in the 
class of perturbations, which satisfy the Dirichlet assumptions, were only obtained for certain special 
cases of the ellipsoids of the second family. Riemann’s and Lyapunov’s conclusions are the main results 
in this area of knowledge. 

Riemann investigated the stability of ellipsoids lying on a certain curve in a two-dimensional manifold 
of ellipsoids of the second family, but in a narrow class of perturbations which, in addition to the Dirichlet 
assumptions, also satisfy the requirements of conservation: (1) the orientations of the angular velocity 
and vorticity vectors and (2) the values of integrals (1.8) and (1.9). 

Lyapunov gave a solution of the stability problem for the cases of the Maclaurin and Jacobi ellipsoids, 
which are special cases of the Riemann ellipsoids of the second family [4]; apparently none of the 
remaining Riemann ellipsoids was considered by Lyapunov. 
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Lyapunov’s proofs were based on proofs that a strict minimum was reached on the functional of the 
changed potential energy in the steady rotation considered. Note, however, that the stability problem, 
in the class of perturbations which satisfy Dirichlet’s assumptions, can also be solved differently using 
Lyapunov’s second method, since system (l.l)-(1.4) is a system of ordinary differential equations (with 
a finite number of degrees of freedom). 

A corresponding method was presented in [l]; it can obviously also be used to investigate the stability 
of any Riemann ellipsoids. 

In this paper we describe some results obtained when solving the problem of the stability of Riemann 
ellipsoids using a method which is a development of Rumyantsev’s method [l]. 

Henceforth we mean by the stability of the equilibrium ellipsoids, their stability in the class of 
perturbations which satisfy Dirichlet’s assumptions, i.e. their Lyapunov stability as equilibria of system 
(l.l)-(1.4). 

In Section 3 we give a general scheme of the method used to solve the problem. The stability region 
S is determined using Lyapunov’s second method; here it turns out to be possible to specify it in an 
explicit analytical form both in the parameter space of the first family of Riemann ellipsoids (Section 
4) and in the parameter space of the second family (Section 5). 

The fact that system (l.l)-(1.4) is Hamiltonian on any combined level of the momentum integral 
(1.8) and the circulation integral (1.9) the proof of which is given in Section 2, enables us, in this case, 
to use a certain general scheme of analytical determination in the parameter space of the equilibria of 
the family of Hamiltonian systems of the region U, such that almost all the equilibria belonging to it 
are unstable (Section 3). The corresponding regions U, both for the first (Section 4) family of Riemann 
ellipsoids and for the second (Section 5), can be specified in explicit analytical form by an appropriate 
choice of the coordinates in the parameters spaces of these families. 

2. THE STRUCTURE OF SYSTEM OF EQUATIONS (l.l)-(1.4) 

It was shown in [2] that the equations of motion of any finite-dimensional mechanical system with 
holonomic constraints and potential forces can be represented in Hamiltonian form. As t turns out, 
this is also true for system (l.l)-(1.4); this fact corresponds to the well-known results in [2], although 
it is not a direct consequence of them: a priori it is not clear whether system (l.l)-( 1.4) can be identical 
with a system with holonomic constraints and potential forces. 

We will show that system (l.l)-(1.4), after the diffeomorphism 

(~,~.ci,~,~,q,~,o,,~2,~~)~(~)=(a,6,~,,pb;G,,G2,G3,1,,I~,f~) 

given by the relations 

(2.1) 

M (b2 -2)2 
G, =- 

4M b*c* 

5 b2+c2 
P+ --wI 

5 b*+c* 
(123, abc, pqr) 

1, =-Y~cw, (123, ah) 

PO 2$(1+&)+-&j; Pb =f(“(l+j&)+$T) 

changes to the system 

i= (z,H) 

Here H(z) is the energy (1.7) in {z} coordinates (2.1) 

5 [a4b4(pi + pi)+(ap, -h)*l 
H=yL+z7 a4b4 + a2 + b* 

(2.2) 

(2.3) 

(2.4) 

where 

‘* +‘* Gf + ‘*+‘* G* + a2+b2 G,Z + 4bc 

(a* _&* * (a* -b*)* (b* -c*)* GA + 
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4ac 
G212 + 

4ab 

+(a2 -c~)~ (a2 - b2)2 
q3+ b2+c2 12+ a2+c2 12+ a2+b2 l2 +w (2.5) 

(b2-c2)2 ' (a2-,2)2 2 (a2 -b2)2 3 1 
The variable c in X (2.5) is assumed (for convenience) to be independent; {,} is the Poisson bracket 

on C”(Z), specified as follows: 

lC;,Cjl=E~jiC~~ (li~ljl=Ekji~~~ Ia,P,)=(b,&,)=I (‘W 

while the brackets between all the remaining pairs of phase variables are zero. 
Starting from the form of the function H (2.4) and taking into account definition (2.6) we obtain that 

Eq. (2.3) corresponding to the variable z = Gi, has the form 

5 -- 

[ 

a2+c2 G2+ 

M (a2 -c~)~ 
2ac 1 G 

(a2 42 2 1 3 

and, by relations (2.2), converts into the initial variables in the first momentum equation (1.1). 
Equation (2.3) for the variable z = I,. 

5 i, =- 

[ 

a2+b2 
I+ 

2ab 5 

M (a2-b2)2 3 (a2-b2)2 
G3 l,-- 1 [ a2+c2 1 + 

2ac G 1 
M (a2-c2)2 ’ (a*-~‘)~ 1 2 3 

in the initial variables acquires a form identical to the first Helmholtz equation (1.2). 
Equations (2.3) for the semiaxes a.and b convert, in the variables (a, b, a, b, p, q, r, ml, w2, w3), into 

the identities daldt = h and dbldt = b, as it should. 
We will now show that the equation 

dp,ldt = -Ho 

of system (2.3) is Eq. (1.3) in the initial variables. 
Differentiating function (2.4) we obtain this equation in expanded form 

c=l /(ob) 

In the initial phase variables we have 

a (a& + b, j2 
% a4b4 +a2 +b2 

(2.7) 

(2.8) 

(2.9) 

Finally, differentiating the function 3% (2.5) with respect to a and c and taking relations (1.6) into account, 
we obtain, after reduction 

(2.10) 

where tiX and GjL are the functions (1.5). 
Now substituting expressions (2.8)-(2.10) into (2.7) we obtain Eq. (1.3). 
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In exactly the same way we obtain that Eqs (2.3) for the variables z = Gz, G3 convert, in the initial 
variables, into the corresponding equations (1.1); Eq.(2.3) for the variable z = 12, 1s converts into the 
last two of the Helmholtz equation (1.2), while Eq.(2.3) forpb converts into Eq.(1.4). 

Hence, system (l.l)-(1.4) which describes the dynamics of the Dirichlet liquid ellipsoid turns out 
to be coincident with the Hamiltonian system of the form (2.3) (apart from the diffeomorphism (2.1)). 

Here at any combined level 

M= 
i 

z:C Gf=CGi;, cr,‘=CI~i, (i=1,2,3) 
i 1 

of integrals (1.8) and (1.9) system (l.l)-(1.4) is a Hamiltonian system, since the restriction {J of the 
bracket {,} (2.6) to C-(M) is non-degenerate. This follows directly from the from of (2.6) taking into 
account the fact that the annulet of the Poisson bracket, corresponding to the usual commutator in the 
so (3) {ml, 

3. A GENERAL SCHEME FOR DETERMINING THE STABILITY AND 
INSTABILITY REGIONS 

Suppose now that z,, is a certain equilibrium ellipsoid. Consider system (l.l)-(1.4) at the level 

MZO = (z : CC? = G?(Z()). Eli’ = 1f(z())} 

MZO =M,Jil. (Z)=(~,~,~,,P~;G,,I,.G~,I*) 

We have 

t = (Z,h(i;(z,))l’ (3.1) 

Here h(5; (zs)) is the restriction of the function (2.4) to the level M,,, and the notation (zc) indicates 
the parametric dependence of the function h(f; (za)) on the coordinates of the point z. in the space of 
the set of equilibrium ellipsoids considered. The bracket { ,}’ is specified in S coordinates on M,,,, taking 
definitions (2.6) into account, by the relations 

lu,pol’= lb,!%)‘= 1 

Z-12 K 
[/,,/,)'z-/,(~) I+ l:(q)+;~o;-I, 

( 

2 

I 
(3.2) 

{G,,G,l’=-G&o) 
G;(zO)+G;(zo)-G:-G2 

G,2 (zo ) 

while the brackets for all the remaining pairs of phase variables (z) are zero. 
The condition 

h'2'(6i;(Zo))=d2h(t;(ZO))Ji=io'o (3.3) 

equivalent to the condition that the Lyapunov function from integrals (1.7)-(1.9) of system (l.l)-(1.4) 
exists, is obviously the sufficient condition for the ellipsoid z. considered to be stable. 

When condition (3.3) is satisfied, the corresponding Lyapunov function will be, for example, the 
function 

The question naturally arises as to what extent (3.3) can also be the necessary stability condition. 
Condition (3.3) implicitly specifies the stability region S in the parameter space of the ellipsoids 

considered. 
The fact that system (3.1) is Hamiltonian also enables one, moreover, to specify the region U in it 

such that almost all the ellipsoids belonging to it are unstable. 
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Suppose b(z,,)} are canonical coordinates, which always exist in view of the Darboux theorem, 
in which system (3.1), linearized in the neighbourhood of the point to, has the standard Hamiltonian 
form 

where 

j, = sgrad (fi*)(y; (~0))) (3.4) 

K’*‘(y;(~)) = h’*‘(E*(z )) I - 
’ 0 ILl+(Yl 

In the parameter space of the family of equilibrium ellipsoids considered, we define the region D as 
the region occupied by those ellipsoids z. for which the limitation of the corresponding form K(*)(y; 
(zo)) on some (any) Lagrange plane in a symplectic manifold I} is positive-definite. 

Then, for any ellipsoid z. E D of general position, condition (3.3) is the stability criterion. 
We will show the necessity. Suppose the ellipsoid zo E D of general position is the stable equilibrium 

position of system (l.l)-(1.4). Then all the eigenvalues of the matrix of the form K(*l(y; (zo)) are pure 
imaginary and different. In this case, as is well-known, a symplectic transformation b> + {pi, qi} exists 
by which the form K(*)(y; (zo)) is reduced to the canonical form 

(3.5) 

where pi and qi are conjugate phase variables corresponding to one another. If in the form (3.5) at least 
one a > 0, then in the symplectic manifold bi, qi} no Lagrange plane exists the restriction to which 
of function (3.5) would be positive-definite. Hence, starting from the above assumption, taking into 
account the definition of the region D and the fact that, with a symplectic transformation the Lagrange 
plane transforms into a Lagrange plane) we obtain that oi > 0 for all i. Consequently, the stability of 
the ellipsoids z. implies that the form Z& (y; (zo)), and of course also h(*)( 65; (zo)), are positive-definite, 
which it was required to prove. 

It is obvious that almost all ellipsoids zo E U, U = D \ 3, where D and S are defined above, are unstable. 
Note also that in order for the ellipsoid z. to belong to the region D defined above, it is not entirely 

necessary to satisfy, in addition to the condition 

where L is a certain La range plane, the condition that the form K(‘)(y; (zo)) should be “split” into 
two, one of which is Kc2fy; (~0)) 1 

In order words, it is not at all neLckssary that system (3.1) should be identified with a certain “natural” 
system. 

Note that the discussion presented above is fairly general and can be used to solve the problem of 
the analytical determination of the instability region in the space of equilibria of any family of 
Hamiltonian systems. 

4. THE STABILITY OF EQUILIBRIUM ELLIPSOIDS OF THE FIRST 
FAMILY OF RIEMANN ELLIPSOIDS 

Riemann showed [3] that equilibrium ellipsoids only exist in two cases: 
1. when one of three pairs (wi,p), (02, q) and (~3, r) (or (Gi, li), i = 1,2,3) has both zero components: 

without loss of generality - the first: 1t = Gt = 0, 
2. when the zero components have two of these pairs: (Ii = G, = 0 and 1, = G2 = 0). 

Consider the first of these families of equilibrium ellipsoids PC:,. It is formed by the ellipsoids 

z. =(a=ao,b=6,,,G, =I, =O,C, =G,,,l, =120,GJ =Gso,fs =I,,), (4-l) 

in the specification of which six parameters are related [3] by four equilibrium equations. 
In the parameter space of the family PC:, of ellipsoids (4.1) we choose a0 and b. as the coordinates 

PI* 
Note that the equilibrium equations here are the equations 
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(4.2) 

This immediately follows from the conclusions reached in Section 2 and the form of the function H 
(2.4). The first two of Eqs (4.2) give 

ai +ci ai+bj 

(ai-ci)2 -(& -b2)2 = 
2aobo 

0 (a: 
130 2aoco 120 _ 

bi)2 (ai co2 )2 - GJo - $0 

= 2aobo G30 2aoco 

(ai - bi)2 
-- 

(ai -c:)~ 
G, 

I,, 12, 
(4.3) 

that enables us [3] to determine the relations 13dG30(ao, bo) and 12,jGzo(ao, bo) explicitly from the 
corresponding quadratic equation; in Eqs (4.3) and everywhere henceforth co = ll(aobo). The last two 
equations of (4.2), taking (4.3) into account, represent a system of two inhomogeneous equations, linear 
in Gzo and GsO, all of whose coefficients are explicit functions of a0 and b,,. 

Hence, the equilibrium equations which related the parameters occurring in the specification of 
ellipsoids (4.1) are such that the functions 

~~a,,b,). ~(ao.bo). G~o(ao~bo)l~~o(ao~bo) (4.4) 

are explicit analytical functions of known form. All that was said in Section 3 regarding the stability 
of the equilibrium ellipsoids also obviously applies in general form to the family of ellipsoids (4.1). 
Here, because of the explicit form of the functions (4.4) the analytical specification of the regions 
S and U in the parameter space PC:){ao, bo} presents no difficulties from the computational point of 
view. 

The region S is specified by the following two conditions 

where 

b; + c; ai +bi 22-ia b 00 
m~i=(b~-c~)2-(a~-b~)2-(a~-b~)2 

2boco 
mI: = (b,2 _c2)2 

j=1,2 

and 

d2 a2+c2 G;+ a2+b2 

(a2 - c2)2 
2 2(G&+G&G;)+ 

(a2-b ) 
a2+;221:+ 

(a2 -c ) 

a2+b2 
2 (& +$I3 -I;)+ 

4ac 4ab 

+(a2 
2 

-b ) (a2 - c2)2 
G2[2 + 

(a2 - b2)2 
G3oI30 x 

(4.5) 

(4.6) 

It can be seen that all the coefficients of the quadratic form on the left-hand side of condition (4.6) 
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are functions of aO, bs, 13dG3a, 12dG2a, G&, and G3* Substituting the explicit form of relations (4.4) into 
(4.5) and (4.6), we obtain, in explicit analytical form, the conditions which specify the region S of clearly 
stable ellipsoids (4.1) in PC: {aa, 6,). 

We will now determine t h e region D from Section 3 in R$){as, 6,). 
Each of systems (3.1), linearized in the neighbourhood of “its own” equilibrium z. 

SZ; = 20(Z0)ii(h'2'(6~;(ZO)))jk~~~ 

where 11 o(zo) llii is the matrix of bracket (3.2) at the point ZO, can be reduced to the form (3.4) by the 
simple diagonal replacement 

(82) --$ (Y~,,,l= ly, =a, Y2 = POT Y3 = b9y4 = Pb; 

Taking into account the FFression obtained for the form KC2)(y; (zo)) we conclude that the region 
D combines four regions, D (a, p = 1,2), specified from the condition for the restriction of this form 
to the Lagrange plane in the symplectic manifold b>, corresponding to the planeslap(p,,& 6G,, S$) 
in the initial coordinates to be positive-definite. Using the explicit form of the function h(Z; (zo)), defined 
by the second formula of (4.2) we obtain that these conditions are equivalent to the conditions for the 
2 x 2 matrix Map of the following form to be positive-definite 

M’ ’ = (1 m;’ 11, Ml2 = 11 my 11, M2’ = II nl;’ 11, M22 = 11 rq II 

where mir(ao, 6,) are functions from condition (4.5), 

I2_ II 
“I I -“II’ m/i =rnif =0 

Uo’+Co’ ~70’ + 6; 4~060 
“” = (a; - ~02)~ - (a; - 6;)2 + (00’ - 6;)2 fJo 

m:: = m:: l/3o ++G30.120 "Gzo ’ 
mf.. = rni: = 0, m.$ = m:i 

22 
ml1 =rnf:, m22 - m:: 

22 - 

(4.7) 

22 
ml2 

2aoco 2ao60 G20120 

= m2” = (~0’ - ~02)~ + (a,’ - 6;)2 G301Jo 

It can be seen that Dab f 0 
Substituting the explicit relations (4.4) into (4.7) for the elements mra, we obtain, in explicit analytical 

form, the conditions which specify the regions Dap in the parameter space PC:){ao, 6,) 

Almost all ellipsoids (4.1) z. E U are unstable, where 

U= U D*‘\s, 
a.p=1.2 

where the regions Dab and S are specified by conditions (4.8) and (4.5)-(4.6) respectively. 
Hence, taking into account the observations from Section 3 and because of the appropriate choice 

2 of coordinates in the parameter space P(i), 
regions in PC:, in explicit analytical form. 

it turns out to be possible to specify the stability and instability 

The stability of the ellipsoids of the first family of Riemann equilibrium ellipsoids PC:, has not previously 
been investigated in the literature by analytical methods. 
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5. THE STABILITY OF THE EQUILIBRIUM ELLIPSOIDS OF THE 
SECOND FAMILY OF RIEMANN ELLIPSOIDS 

We will now consider the stability of the equilibrium ellipsoids which belong to the second family of 
Riemann ellipsoids indicated in Section 4 [3] 

zo =(a=ao,b=bo,~===oo,p=q=o, =o* =o,r=a,o, =JQ) (5.1) 

or in the variables {z} (2.1) 

G, = NC,, + fc,, 1 x 
’ 4 = -+oboj!2 

f> 1, u. > co = I/(u,,bo), b. > co = l/(aobo) 

The four parameters (uo, bo,f, Q) which occur in the specification 
the following two equations [3,4] 

of ellipsoids (5.1), are related by 

dA (5.2) 
uobodoi22 = u;b; ?f 1 

dh 

4 a&)&x 
&!! 

I 
O 4 (co’ +q/fi 

d 
0 

= 2uobo 
-(f - 1). +,(V = (ij + W,2 + A) 

0 0 

cpo(h) = (~0’ + h)(b,’ + h) 

The set PC;, of steady rotations (5.1), like the set PC:,, is two-dimensional. We choose a0 and b. to be 
coordinates on this set [3,4]. 

The solutions (5.1) of system (l.l)-(1.4) d escribe steady rotations, for which the motion of the liquid 
particles is the superposition of a rigid rotation and internal uniformly vortex motions. The vectors of 
the angular velocity and of the vorticity of the internal motions are directed along the minor axis (co) 
in ellipsoids (5.1). 

The Jacobi and Dedekind ellipsoids are limiting special cases of the Riemann ellipsoids (5.1) [3]. The 
curve specified by the conditionf = 1 corresponds to a series of Jacobi ellipsoids on the two-dimensional 
manifold of ellipsoids (5.1), while the ellipsoids (5.1) withf = 00 correspond to a series of Dedekind ellipsoids. 

We will now consider the Lyapunov stability of the Riemann ellipsoids (5.1) as particular solutions 
of system (l.l)-(1.4). 

Suppose z. is ellipsoids (5.1) with semiaxes a0 and bo. Consider the restriction &Z; (zo)) of the function 
H (2.4) to that combined level of momentum integral (1.8) and circulation integral (1.9), to which this 
ellipsoid belongs. Like the function h(T; (zo)) from Section 4, the function h(f; (zo)), defined by the 
second formula of (4.2), depends parametrically on a0 and bo, but this dependence is quite different 
here since the constants of integrals (1.8) and (1.9) for the case of ellipsoidszo E P $ (5.1) are expressed 
differently in terms of a0 and b. than for the case of the ellipsoids z. E PC:, (4.l).kence, the sufficient 
condition for the stability of the ellipsoid z. (5.1) 

P2’(t5?;(zo)) = d2G(2; (20))) lgo > 0 (5.3) 

(see Section 3), represented in explicit form in the variables a0 and bo, is obviously not the same as the 
corresponding representation of condition (3.3). 

It turns out to be very much simpler than (3.3) and reduces, as can easily be shown, to the condition 

(5.4) 
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(5.5) 

This conclusion follows from the fact that the form &(*)(E; (zo)) is the sum 

~‘2’(~;(zo)>d2(~(~;o) lo=o&bo) I(~o,~b,/,,/2,G,,G2)=(0.0.0.0.0.0) + 

+d2(F(a.b;(Zo))l(0.6)=(oo.bo) (5.6) 

where the first form on the right-hand side of (5.6) is positive-definite for all (ao, ba) E Z’&, which can 
be shown directly. We will now represent the stability condition (5.4) for the ellipsoidszo (5.1) in explicit 
analytical form in the variables a0 and bo. 

We reduce the matrix of the quadratic part of the function F (5.5) to the form ]]SV ]I, where 

s,2 =s 2, = W,, +~R2do (5.7) 

Here 

etc. The quantity do is defined by the penultimate formula of (5.2). 
Further, it is pertinent to make a certain digression here, which touches on the stability of the Dedekind 

ellipsoids 

1 Q a0 60 u=uo,6=6(),p=q=w, =a* =o,r=o,q =- -+- ( 11 2 60 a0 
(5.8) 

each of which is specified [3] by the parameters (a”, bo, Q) of some Jacobi ellipsoid (“conjugate” 
[3,4] with respect to the Dedekind ellipsoid considered). Note that the matrix with elements (5.7) for 
Dedekind ellipsoid (5.8) in which we must now neglect all terms with Q, doQ2 and replace diSt2 by Q*, 
change to the same matrix into which the matrix with elements (5.7) for the Jacobi ellipsoid conjugate 
to (5.8) changes, where the latter is identical with the corresponding matrix obtained previously [5]. 
The fact that each such matrix is positive-definite [5] therefore proves not only the stability of the 
corresponding Jacobi ellipsoid but also the stability of the Dedekind ellipsoid “conjugate” to it. Hence, 
the Dedekind ellipsoids are always stable when defined. 

The expressions for the elements sii (5.7) enable us to determine, in explicit analytical form, in the 
parameter space P$ao, b,), specifying the ellipsoids (5.1) the region of those of them to which the 
certainly stable ellipsoids (5.1) correspond. In fact, bearing in mind the equilibrium equations (5.2) 
we obtain that the parameters do and R can be eliminated from expressions (5.7) for the elements sij 
everywhere where they occur, so that these elements turn out to be functions solely of a0 and b. and 
take the form 

s,, = w,, +3$M2] 
Mh 

$0(h)&&. 

s22 = wb6+3EM2J AdA 
cpoG,l~ 

(5.9) 
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= w,,+3zM’j aobo I 
St2 = S2I ijo(h) - [aobo + Va&&/~ 1 d.A 

It can be shown by elementary calculations that tr](sii(] > 0 for all a0 and b. (the integrand for sit 
2 2 and s22 is a fraction with denominator aoboq 5/z and numerator a polynomial in h, all the coefficients of 

which are positive). Hence, the necessary and sufficient condition for the matrix with elements (5.9) 
to be positive-definite is the condition 

A(ao.bo)=S,,(ao.bo)S22(ao’bo)-S:2(ao,bo)>O (5.10) 

In other words, inequality (5.10) is the analytical representation of condition (5.4) and therefore defines 
a set of stable ellipsoids (5.1). 

We will now consider the problem of determining the instability region in parameter space P$, of 
ellipsoids (5.2). The condition for the first quadratic form in the variables (Pa,pb, I,, 12, Gi, G2), written 
on the right-hand side of relation (5.6), to be positive-definite denotes that all the ellipsoids (5.1) 
automatically fall in the region D from Section 3. Hence, taking into account Section 3 and the fact 
that the stability region S is specified in the space P$){ao, b,} by condition (5.10) it immediately follows 
that a condition opposite to condition (5.10) specifies the region U in the space Pc${ao, bo} such that 
almost all the ellipsoids (5.1) belonging to it are necessarily unstable. 

In fact, all the equilibrium ellipsoids (5.1) from the region specified by a condition opposite to condition 
(5.10) are unstable, and this conclusions can be obtained in this case without using the remark from 
Section 3. 

In fact, let us assume that any ellipsoid (5.2) with semiaxes a0 and b. is stable. Then, it is also stable 
like the solution of the system obtained from system (f.l)-(,1.4), if7we put fr = 12 = Gr = G2 = 0 (in 
the initial variablesp = q = w1 = o2 = 0), CC; = CC;“, Ef; = I&, i.e. a system with phase space of 
dimension 4 in {a, b, pa, pb}. This latter system is defined since, as directly follows from the form of 
Eqs (l.l)-(1.4), the manifold {p = q = a1 = 02 = 0) and, of course, also the manifold 

N=(z:1,=12=G,=G2=0; l,=l,,, G,=G,,), 

is invariant for system (l.l)-(1.4). This system, with phase space N, is Hamiltonian (Section 2) for all 
a0 and bo, and moreover, is natural, since the Hamiltonian in it is the sum of the “potential” energy 
and the “kinetic” energy - a positive-definite function of the momenta pR and pb. 

We can therefore use the converse of Lagrange’s theorem here. It remains to note that the matrix 
of the quadratic part of the function, which is the potential energy in a system on the manifold N at 
the point (ao, bo, O,O), is identical with the matrix with elements (5.9). In other words, any non-degenerate 
(A(ao, b,) f 0) ellipsoid (5.1) the parameters a0 and b. of which do not satisfy condition (5.10), is unstable 
even in the class of perturbations for which the orientation of the angular velocity and vorticity vectors 
remain unchanged and the values of the momentum integral (1.8) and circulation integral (1.9) remain 
the same as for unperturbed motion, i.e. for the equilibrium ellipsoid considered, and all the more it 
is Lyapunov stable as the solution of the initial system (l.l)-(1.4). 

Hence, the answer to the question of the stability with respect to almost each ellipsoid (5.1) with 
the exception, possibly, of the bifurcation ellipsoids, can be obtained analytically. 

It should noted that problems related to ellipsoidal figures of equilibrium were of interest not only 
to the nineteenth century classics. For example, the so-called virial method of investigating 
hydrodynamic equations [3], which is essentially the method of moments, was proposed, where stability 
was understood to mean stability in the first approximation of the given steady rotation as solutions of 
the first-, second-, third-, etc. order virial equations. It has been shown [3] that the second-order virial 
equations are equivalent to system (l.l)-(1.4). Hence, for example, the Riemann ellipsoids (5.1) which 
are unstable in the first approximation (i.e. those for which A(ao, bo)<O, where A is a function from 
condition (5.10)) are also unstable in the terminology used by Chandrasekhar [3], who called them 
“unstable with respect to the second harmonics”, in this case, the instability region is defined in [3] by 
direct linearization of the equations of system (l.l)-(1.4) which requires extremely complicated 
calculations. 

If we are talking about “stable” equilibrium ellipsoids, stability in the first approximation in this case 
(all the roots are pure imaginary and there are no less than two zero roots) naturally does not guarantee 
the Lyapunov stability which, therefore, needs to be proved here. This can only be done using Lyapunov’s 
second method. 
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